翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

simple shear : ウィキペディア英語版
simple shear

In fluid mechanics, simple shear is a special case of deformation where only one component of velocity vectors has a non-zero value:
\ V_x=f(x,y)
\ V_y=V_z=0
And the gradient of velocity is constant and perpendicular to the velocity itself:
\frac = \dot \gamma ,
where \dot \gamma is the shear rate and:
\frac = \frac = 0
The deformation gradient tensor \Gamma for this deformation has only one non-zero term:
\Gamma = \begin 0 & & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end
Simple shear with the rate \dot \gamma is the combination of pure shear strain with the rate of \dot \gamma \over 2 and rotation with the rate of \dot \gamma \over 2:
\Gamma =
\begin \underbrace \begin 0 & & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end
\\ \mbox\end =
\begin \underbrace \begin 0 & & 0 \\ & 0 & 0 \\ 0 & 0 & 0 \end \\ \mbox \end
+ \begin \underbrace \begin 0 & & 0 \\ \\ \mbox \end
Important examples of simple shear include laminar flow through long channels of constant cross-section (Poiseuille flow), and elastomeric bearing pads in base isolation systems to allow critical buildings to survive earthquakes undamaged.
== Simple shear in solid mechanics ==
(詳細はisochoric plane deformation in which there are a set of line elements with a given reference orientation that do not change length and orientation during the deformation.〔Ogden, R. W., 1984, Non-linear elastic deformations, Dover.〕 This deformation is differentiated from a pure shear by virtue of the presence of a rigid rotation of the material.〔(【引用サイトリンク】title=Where do the Pure and Shear come from in the Pure Shear test? )〕〔(【引用サイトリンク】title=Comparing Simple Shear and Pure Shear )
If \mathbf_1 is the fixed reference orientation in which line elements do not deform during the deformation and \mathbf_1-\mathbf_2 is the plane of deformation, then the deformation gradient in simple shear can be expressed as
:
\boldsymbol = \begin 1 & \gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end.

We can also write the deformation gradient as
:
\boldsymbol = \boldsymbol_1\otimes\mathbf_2.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「simple shear」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.